Identification of human UDP-glucuronosyltransferase isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)- 5-(2-furyl)-4-oxazoleacetic acid (TA-1801A).

نویسندگان

  • Hidefumi Kaji
  • Toshiyuki Kume
چکیده

We characterized the hepatic and intestinal UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)-5-(2-furyl)-4-oxazoleacetic acid (TA-1801A) in humans through several in vitro mechanistic studies. Assessment of a panel of recombinant UGT isoforms revealed the TA-1801A glucuronosyltransferase activity of UGT1A1, UGT1A3, UGT1A7, UGT1A9, and UGT2B7. Kinetic analyses of the TA-1801A glucuronidation by recombinant UGT1A1, UGT1A3, UGT1A9, and UGT2B7 showed that the K(m) value for UGT2B7 was apparently consistent with those in human liver and jejunum microsomes. The TA-1801A glucuronosyltransferase activity in human liver microsomes was inhibited by bilirubin (typical substrate for UGT1A1), propofol (typical substrate for UGT1A9), diclofenac (substrate for UGT1A9 and UGT2B7), and genistein (substrate for UGT1A1, UGT1A3, and UGT1A9). The inhibition by bilirubin, propofol, and diclofenac of the TA-1801A glucuronidation was less pronounced in jejunum microsomes than liver microsomes, suggesting that the contribution of UGT1A1, UGT1A9, and UGT2B7 to the TA-1801A glucuronidation is smaller in the intestine than the liver. In contrast, genistein strongly inhibited the TA-1801A glucuronosyltransferase activity in both human liver and jejunum microsomes. These results suggest that the glucuronidation of TA-1801A is mainly catalyzed by UGT1A1, UGT1A9, and UGT2B7 in the liver, and by UGT1A1, UGT1A3, and UGT2B7 in the intestine in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of ezetimibe (Zetia).

Ezetimibe [1-(4-fluorophenyl)-3(R)-[3-(4-fluorophenyl)-3(S)-hydroxypropyl]-4(S)-(4-hydroxyphenyl)-2-azetidinone] (Zetia; Schering-Plough, Kenilworth, NJ) is the first in a new class of cholesterol-lowering agents known as cholesterol absorption inhibitors. The objective of this study was to identify the isoform(s) of human liver and intestinal UDP-glucuronosyltransferase (UGT) enzymes responsib...

متن کامل

Characterization of N-glucuronidation of 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl) pyridine-2-carbonitrile (FYX-051): a new xanthine oxidoreductase inhibitor.

In humans, orally administered 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl) pyridine-2-carbonitrile (FYX-051) is excreted mainly as triazole N(1)- and N(2)-glucuronides in urine. It is important to determine the enzyme(s) that catalyze the metabolism of a new drug to estimate individual differences and/or drug-drug interactions. Therefore, the characterization and mechanism of these glucuronidatio...

متن کامل

Identification of human UDP-glucuronosyltransferase isoforms responsible for the glucuronidation of glycyrrhetinic acid.

Glycyrrhetinic acid, the active metabolite of glycyrrhizin, is primarily eliminated by glucuronidation reaction in vivo. In spite of the widespread clinical use of glycyrrhizin, UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of this drug are still unknown. This report identifies and characterizes the UGT isoforms responsible for glycyrrhetinic acid glucuronidation. I...

متن کامل

Glucuronidation of anticancer prodrug PR-104A: species differences, identification of human UDP-glucuronosyltransferases, and implications for therapy.

PR-104, the phosphate ester of a dinitrobenzamide mustard [PR-104A; 2-((2-bromoethyl)-2-{[(2-hydroxyethyl) amino] carbonyl}-4,6-dinitroanilino)ethyl methanesulfonate], is currently in clinical trial as a hypoxia- and aldo-keto reductase 1C3 (AKR1C3)-activated prodrug for cancer therapy. Here, we investigate species (human, dog, rat, mouse) differences in metabolism to the corresponding O-glucur...

متن کامل

Functional characterization of wild-type and variant (T202I and M59I) human UDP-glucuronosyltransferase 1A10.

UDP-glucuronosyltransferase (UGT) 1A10 is an isoform of UGT1A, which is expressed in extrahepatic, biliary and aerodigestive/gastrointestinal tissues. We have previously reported two nonsynonymous single nucleotide polymorphisms in exon 1 of human UGT1A10 gene; 177G>A and 605C>T resulting in amino acid alterations, M59I and T202I, respectively. In the present study, wild-type (WT) and these var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and pharmacokinetics

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2005